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ABSTRACT 
Recently, the ev-degree concept is defined in Graph Theory. In this study, we introduce the modified ev-degree 
Zagreb index, ev-degree inverse index, F-ev-degree index, reciprocal ev-degree product index, general ev-degree 
index of a graph. Also we propose some multiplicative ev-degree indices such as multiplicative ev-degree index, 
multiplicative modified ev-degree index, multiplicative F-ev-degree index, multiplicative ev-degree inverse index, 
multiplicative ev-degree product index, multiplicative reciprocal ev-degree product index, general multiplicative 
ev-degree index of a graph. We compute these ev-degree and multiplicative ev-degree indices for certain chemical 
structures. 
 
Keywords: ev-degree indices, multiplicative ev-degree indices, networks, nanotubes. 
Mathematics Subject Classification: 05C05, 05C07, 05C90.. 

1. INTRODUCTION 
Graph indices are important on the development of Theoretical Chemistry. Several graph indices were defined by 
using vertex degree concept, see [1]. Many graph indices have some applications in Chemistry, see [2,3]. 
 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u 
is the number of vertices adjacent to u. The set of all vertices which adjacent to v is called the open neighborhood 
of v and denoted by N(v).  The closed neighborhood set of v is the set N[v] = N(v) {v}. Recently, Chellali et al. 
[4] defined the ev-degree concept in Graph Theory as follows:  
 
Definition: Let G be a connected graph and e = uvE(G). The ev-degree of an edge e, denoted by dev(e), equals 
the number of vertices of the union of the closed neighborhoods of u and v. Clearly dev(e)= dG(u)+ dG(v) – ne, 
where ne means the number of triangles in which edge e lies in. 
 
 The ev-degree Zagreb index was introduced by Ediz in [5] and it is defined as 

   
 

2
ev ev

e E G

M G d e


  . 

 We introduce the modified ev-degree Zagreb index of a graph G, defined as 

                                                       m
evM G
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            Also we define the ev-degree inverse index of a graph G as 
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             We propose the F-ev degree index of a graph G, defined as  
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 In [6], Ediz introduced the ev-degree Zagreb Randić or product index and it is defined as 

   
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 We now introduce the reciprocal ev-degree Randić or product index, defined as 
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 We continue this generalization and introduce the general ev-degree index of a graph G, defined as 

        
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where a is a real number. 
 Recently some graph indices were studied in [7, 8, 9, 10, 11, 12]. 
 We propose some multiplicative ev-degree indices as follows: 
 The multiplicative ev-degree index of a graph G is defined as 

        
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 We introduce the multiplicative modified ev-degree index of a graph, defined as 
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 We propose the multiplicative F-ev-degree index of a graph G, defined as 
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 We put forward the multiplicative ev-degree inverse index of a graph, defined as 
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 We introduce the multiplicative ev-degree product index of a graph, defined as 
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 We propose the multiplicative reciprocal ev-degree product index of a graph G, defined as 
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 We continue this generalization and define the general multiplicative ev-degree index of a graph G, 
defined as 

        
 
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Recently some multiplicative graph indices were studied, for example, in [13, 14, 15, 16, 17, 18, 19, 20, 21]. In 
this paper, some newly defined ev-degree indices and multiplicative ev-degree indices of certain structures such 
as networks, nanotubes are computed. 
 

2. RESULTS FOR DOMINATING OXIDE NETWORKS 
Dominating oxide network is important toll in chemistry, information science and physics. Mathematical and 
physical properties of this network have been studied in network and graph theory. The family of dominating 
oxide networks is symbolized by DOX(n). The molecular structure of a dominating oxide network is shown in 
Figure 1. 
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Figure 1. The graph of DOX(2) network 

 
Let G=DOX(n). From Figure 1, it is easy to see that the vertices of G are either of degree 2 or 4. The graph G has 
54n2 – 54n + 18 edges. In G, by calculation, there are two types of edges based on the degrees of end vertices of 
each edge as follows: 
 E1 = {uv  E(G) | dG(u) = 2, dG(v) = 4},   |E1| = 24n – 12 
 E2 = {uv  E(G) | dG(u) = dG(v) = 4},   |E2| = 54n2 – 78n + 30. 
 
Clearly, we have dev(e) = dG(u) + dG(v) – 1. The partition of the edges with respect to their ev-degrees of end 
vertices for G is given in Table 1. 
 

Table 1. The ve-degree position of DOX(n) 

dev(u) \ e   E(G)  5 7 
Number of edges 24n – 12 54n2 – 78n + 30 

 
Theorem 1. The general ev-degree index of DOX(n) is 

 ( )( ) ( ) ( )254 7 24 5 78 7 30 7 12 5a a a a a a
evM DOX n n n= ´ + ´ - ´ + ´ - ´  (3) 

Proof: From equation (1) and Table 1, we deduce 

( )( ) ( )
( )

aa
ev ev

e E G

M DOX n d e
Î

= å  

( ) ( )224 12 5 54 78 30 7a an n n= - + - +  

( ) ( )254 7 24 5 78 7 30 7 12 5a a a a an n= ´ + ´ - ´ + ´ - ´  
 
We establish the following results by using Theorem 1. 

 
Corollary 1.1. Let DOX(n) be the family of dominating oxide network. Then 

(i)    22646 3222 1170.evM DOX n n n     

(ii)    254 774 162
.

49 1225 1225
m

evM DOX n n n    

(iii)    254 222 66
.

7 35 35evI DOX n n n    

(iv)    218522 23754 8790.evF DOX n n n    
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(v)    254 24 78 30 12
.

7 5 7 7 5
evP DOX n n n

          
   

 

(vi)       254 7 24 5 78 7 30 7 12 5 .evRP DOX n n n      
Proof: Put a = 2, –2, –1 , 3, –½, ½ in equation (3), we obtain the desired results. 
 
Theorem 2. The general multiplicative ev-degree index of DOX(n) is 

 ( )( ) ( ) ( )224 12 54 78 305 7a a n a n n
evM II DOX n - - += ´  (4) 

Proof: From equation (2) and Table 1, we derive 

( )( ) ( )
( )
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M II DOX n d e
Î

= Õ  

 ( ) ( )224 12 54 78 305 7a n a n n- - += ´  
From Theorem 2, we obtain the following results. 

 
Corollary 2.1. Let DOX(n) be the family of dominating oxide network. Then 

(i)       22 24 12 2 54 78 305 7 .n n n
evM II DOX n       

(ii)   
224 12 54 78 30

1 1
.

25 49

n n n
m

evM II DOX n
  

       
   

 

(iii)       23 24 12 3 54 78 305 7 .n n n
evF II DOX n      

(iv)   
224 12 54 78 30

1 1
.

5 7

n n n
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(vi)       
224 12 54 78 30

5 7 .
n n n

evRP II DOX n
  
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Proof: Put a = 2, –2, 3, –1, –½, ½ in equation (4), we obtain the desired results. 
 

3. RESULTS FOR REGULAR TRIANGULATE OXIDE NETWORKS 
The family of regular triangulate oxide networks is denoted by TROX(n), n3. The molecular structure of a regular 
triangulate oxide network is shown in Figure 2. 

 
Figure 2. The graph of TROX(5) network 

 
Let H=TROX(n). From Figure 2, we see that the vertices of H are either of degree 2 or 4. By calculation, in H, 
there three types of edges based on the degrees of end vertices of each edge as follows: 
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 E1 = {uv  E(H) | dH(u) = dH(v) = 2},   |E1| = 2. 
 E2 = {uv  E(H) | dH(u) = 2, dH(v) = 4},   |E2| = 6n. 
 E3 = {uv  E(H) | dH(u) = dH(v) = 4},   |E3| = 3n2 – 2. 
 
 Clearly, we have dev(e) = dH(u) + dH(v) – 1. The partition of the edges with respect to their ev-degree of 
end vertices for H is given in Table 2. 

dev(u) \ e   E(H)  3 5 7 
Number of edges 2 6n 3n2 – 2 

Table 2. The ev-degree position of TROX(n) 
Theorem 3. The general ev-degree index of TROX(n) is 

 ( )( ) ( )23 7 6 5 2 3 2 7 .a a a a a
evM TROX n n n= ´ + ´ + ´ - ´  (5) 

Proof: Let H = TROX(n). From equation (1) and by using Table 2, we obtain 

( )( ) ( )
( )

aa
ev ev

e E H

M TROX n d e
Î

= å  

 ( )22 3 6 5 3 2 7a a an n= ´ + ´ + - ´  

 ( )23 7 6 5 2 3 2 7 .a a a an n= ´ + ´ + ´ - ´  
 
By using Theorem 1, we establish the following results.  

 
Corollary 3.1. Let TROX(n) be the family of regular triangulate oxide network. Then 

(i)    2147 150 80.evM TROX n n n     

(ii)    23 6 80
.

49 25 441
m

evM TROX n n n    

(iii)    23 6 8
.

7 5 21evI TROX n n n    

(iv)    21029 750 632.evF TROX n n n    

(v)    23 6 2 2
.

7 5 3 7
evP TROX n n n

     
 

 

(vi)     23 7 6 5 2 3 7 .evRP TROX n n n     
 
Proof: Put a = 2, –2, –1 , 3, –½, ½ in equation (5), we obtain the desired results. 
 
Theorem 4. The general multiplicative ev-degree index of regular triangulate oxide network TROX(n) is 

 ( )( ) ( )22 6 3 23 5 7a a an a n
evM II TROX n -= ´ ´  (6) 

Proof: Let H = TROX(n). From equation (2) and Table 2, we derive 

( )( ) ( )
( )

aa
ev ev

e E H

M II TROX n d e
Î

= Õ  

 
( )22 6 3 23 5 7 .a an a n -= ´ ´  

We obtain the following results by using Theorem 4. 
 
Corollary 4.1. Let TROX(n) be the family of regular triangulate oxide network. Then 

(i)    24 12 6 43 5 7 .n n
evM II TROX n      
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(ii)   
24 12 6 4

1 1 1
.

3 5 7

n n
m

evM II TROX n


            
     

 

(iii)    26 18 9 63 5 7 .n n
evF II TROX n     

(iv)   
22 6 3 2

1 1 1
.

3 5 7

n n

evI II TROX n


            
     

 

(v)   
23 3 2

1 1 1
.

3 5 7

n n

evP II TROX n


                 
 

(vi)     
23 233 5 7 .

nn
evRP II TROX n


    

 
Proof: Put a = 2, –2, 3, –1, –½, ½ in equation (6), we get the desired results. 
 

4. RESULTS FOR ARMCHAIR POLYHEX NANOTUBES 
Carbon polyhex nanotubes are the nanotubes whose cylindrical surface is made up of entirely hexagons. These 
carbon nanotubes exist in nature with remarkable stability and possess very interesting thermal, electrical and 
mechanical properties. The family of armchair polyhex nanotubes is denoted by TUAC6[p, q], where p is the 
number of hexagons in a row and q is the number of hexagons in a column. A 2-dimensional network of TUAC6[p, 
q] is shown in Figure 3. 

 
Figure 3. The graph of TUAC6[p, q] nanotube 

 
Let A = TUAC6[p, q]. By calculation, A has 2p(q+1) vertices and 3pq +2p edges. In A, there are three types of 
edges based on degrees of end vertices of each edge. By calculation the edge degree partition of A is as follows: 
 E1 = {uv  E(A) | dA(u) = dA(v) = 2},   |E1| = p. 
 E2 = {uv  E(A) | dA(u) = 2, dA(v) = 3},   |E2| = 2p. 
 E3 = {uv  E(A) | dA(u) = dA(v) = 3},   |E3| = 3pq – p. 
 
From Figure 3, we see that every edge of TUAC6[p, q] does not lie in a triangle. Thus dev(e)= dA(u)+ dA(v). The 
partition of the edges with respect to their ev-degree of the end vertices for A is given in Table 3. 
 

Table 3. The ev-degree partition of TUAC6[p, q] 

dev(e) \ e E(A) 4 5 6 
Number of edges p 2p 3pq – p 
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Theorem 5. The general ev-degree index of TUAC6[p, q] is given by 

 [ ]( ) ( )
6 , 3 6 4 2 5 6 .a a a a a

evM TUAC p q pq p= ´ + + ´ -  (7) 

Proof: From equation (1) and by using Table 3, we obtain 

[ ]( ) ( )
( )

6 ,
aa

ev ev
e E A

M TUAC p q d e
Î

= å  

 ( )4 5 2 6 3a a ap p pq p= ´ + ´ + ´ -  

 ( )3 6 4 2 5 6 .a a a apq p= ´ + + ´ -  
 
We obtain the following results by using Theorem 5. 

 
Corollary 5.1. Let TUAC6[p, q] be the family of armchair polyhex nanotubes. Then 

(i)   6 , 108 30 .evM TUAC p q pq p    

(ii)   6
1 413

, .
12 3600

m
evM TUAC p q pq p   

(iii)   6
1 29

, .
2 60evI TUAC p q pq p   

(iv)   6 , 648 98 .evF TUAC p q pq p   

(v)   6
3 1 2 1

, .
2 66 5

evP TUAC p q pq p
     
 

 

(vi)     6 , 3 6 2 2 5 6 .evRP TUAC p q pq p     

 
Proof: Put a = 2, –2, –1 , 3, –½, ½ in equation (7), we obtain the desired results. 
 
Theorem 6. The general multiplicative ev-degree index of TUAC6[p, q] is 

 [ ]( ) ( )32
6 , 4 5 6a pq pa ap ap

evM II TUAC p q -= ´ ´  (8) 

Proof: Let A = TUAC6[p, q]. By using equation (2) and Table 3, we derive 

[ ]( ) ( )
( )

6 ,
aa

ev ev
e E A

M II TUAC p q d e
Î

= Õ  

 ( )324 5 6 .a pq pap ap -= ´ ´  
We obtain the following results by using Theorem 6. 

 
Corollary 6.1. Let TUAC6[p, q] be the family of armchair polyhex nanotubes. Then 

(i)    2 4 6 2
6 , 4 5 6 .p p pq p

evM II TUAC p q      

(ii)   
2 3

6
1 1 1

, .
16 25 36

p p pq p
m

evM II TUAC p q


            
     

 

(iii)    2 3
6 , 64 125 216 .p p pq p

evF II TUAC p q     

(iv)   
2 3

6
1 1 1

, .
4 5 6

p p pq p

evI II TUAC p q


                 
 

(v)   
2 3

6
1 1 1

, .
2 5 6

p p pq p

evP II TUAC p q


                 
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(vi)     36 , 2 5 6 .
pq pp p

evRP II TUAC p q


    

 
Proof: Put a = 2, –2, 3, –1, –½, ½ in equation (8), we get the desired results. 
 

5. RESULTS FOR ZIGZAG POLYHEX NANOTUBES 
The family of zigzag polyhex nanotubes is symbolized by TUZC6[p, q], where p is the number of hexagons in a 
row and q is the number of hexagons in a column. A 2-dimensional networks of TUZC6 [p, q] is presented in 
Figure 4. 

 
Figure 4. The graph of TUZC6 [p, q] nanotube 

 
Let Z be the graph of zigzag polyhex nanotube TUZC6 [p, q]. By calculation, Z has 2p(q+1) vertices and 3pq + 2p 
edges. In Z, there are two types of edges based on degrees of end vertices of each edge. By calculation, the edge 
degree partition of Z is as follows: 
 E1 = {uv  E(Z) | dZ(u) = 2, dZ(v) = 3},   |E1| = 4p. 
 E2 = {uv  E(Z) | dZ(u) = dZ(v) = 3},   |E2| = 3pq – 2p. 
 
From Figure 4, we observe that every edge of TUZC6[p, q] does not lie in a triangle. Thus dev(e)= dZ(u)+ dZ(v). 
The partition of the edges with respect to their ev-degree of the end vertices for Z is given in Table 4. 
 

Table 4. The ev-degree partition of TUZC6[p, q] 

dev(e) \ e  E(Z) 5 6 
Number of edges 4p 3pq – 2p 

 
Theorem 7. The general ev-degree index of TUZC6[p, q] is given by 

 [ ]( ) ( )
6 , 3 6 4 5 2 6 .a a a a

evM TUZC p q pq p= ´ + ´ - ´  (9) 

Proof: Let TUZC6[p, q]. By using equation (1) and Table 4, we deduce 

[ ]( ) ( )
( )

6 ,
aa

ev ev
e E Z

M TUZC p q d e
Î

= å  

 ( )5 4 6 3 2a ap pq p= ´ + -  

 ( )3 6 4 5 2 6 .a a apq p= ´ + ´ - ´  
 
We establish the following results by using Theorem 7. 

 
Corollary 7.1. Let TUZC6[p, q] be the family of zigzag polyhex nanotubes. Then 

(i)   6 , 108 28 .evM TUZC p q pq p    
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(ii)   6
1 47

, .
12 450

m
evM TUZC p q pq p   

(iii)   6
1 7

, .
2 15evI TUZC p q pq p   

(iv)   6 , 648 68 .evF TUZC p q pq p   

(v)   6
3 4 2

, .
6 5 6

evP TUZC p q pq p
    
 

 

(vi)     6 , 3 6 4 5 2 6 .evRP TUZC p q pq p    

 
Proof: Put a = 2, –2, –1 , 3, –½, ½ in equation (9), we obtain the desired results. 
 
Theorem 8. The general multiplicative ev-degree index of zigzag TUZC6[p, q] is 

 [ ]( ) ( )3 24
6 , 5 6 .a pq pa ap

evM II TUZC p q -= ´  (10) 

Proof: Let Z = TUZC6[p, q]. From equation (2) and by using Table 4, we derive 

[ ]( ) ( )
( )

6 ,
aa

ev ev
e E Z

M II TUZC p q d e
Î

= Õ  

 ( )3 245 6 .a pq pap -= ´  
From Theorem 8, we obtain the following results. 

 
Corollary 8.1. Let TUZC6[p, q] be the family of zigzag polyhex nanotubes. Then 

(i)     2 3 28
6 , 5 6 .pq pp

evM II TUZC p q     

(ii)   
 8 2 3 2

6
1 1

, .
5 6

p pq p
m

evM II TUZC p q


       
   

 

(iii)     3 3 212
6 , 5 6 .pq pp

evF II TUZC p q    

(iv)   
4 3 2

6
1 1

, .
5 6

p pq p

evI II TUZC p q


       
   

 

(v)   
2 3 2

6
1 1

, .
5 6

p pq p

evP II TUZC p q


          
 

(vi)     3 22
6 , 2 6 .

pq pp
evRP II TUZC p q


   

 
Proof: Put a = 2, –2, 3, –1, –½, ½ in equation (10), we obtain the desired results. 
 

6. RESULTS FOR TITANIA NANOTUBES 
Titania is studied in material science. The family of titania nanotubes is symbolized by TiO2[m, n], where m is the 
number of octagons C8 in a row and n is the number of octagons C8 in a column. The graph of TiO2[m, n] is shown 
in Figure 5. 
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Figure 5. The graph of TiO2[m, n] nanotube 

 
Let T be the graph of titania nanotube TiO2[m, n]. By calculation, T has 6n(m+1) vertices and 10mn+8n edges. In 
T, by calculation, there are four types of edges based on the degree of end vertices of each edge as follows: 
 E1 = {uv  E(T) | dT(u) = 2, dT(v) = 4},   |E1| = 6n. 
 E2 = {uv  E(T) | dT(u) = 2, dT(v) = 5},   |E2| = 4mn + 2n. 
 E3 = {uv  E(T) | dT(u) = 3, dT(v) = 4},   |E3| = 3n. 
 E4 = {uv  E(T) | dT(u) = 3, dT(v) = 5},   |E4| = 6mn – 2n. 
 
We observe that every edge of TiO2[m, n] does not lie in a triangle. Therefore dev(e)= dT(u)+ dT(v). The partition 
of the edges with respect to their ev-degree of end vertices for T is given in Table 5. 
 

 Table 5. The ev-degree partition of TiO2[m, n] 

( ) \ ( )evd e e E T  6 7 7 8 

Number of edges 6n 4mn+2n 2n 6mn – 2n 
 
Theorem 9. The general ev-degree index of titania nanotubes TiO2 is 

 ( ) ( ) ( )
2 4 7 6 8 6 6 4 7 2 8a a a a a a

evM TiO mn n= ´ + ´ + ´ + ´ - ´  (11) 

Proof: Let T=TiO2[m, n]. From equation (1) and by Table 5, we deduce 

( ) ( )
( )

2
aa

ev ev
e E T

M TiO d e
Î

= å  

 ( ) ( )6 6 7 4 2 7 2 8 6 2a a a an mn n n mn n= ´ + ´ + + ´ + -  

 ( ) ( )4 7 6 8 6 6 4 7 2 8a a a a amn n= ´ + ´ + ´ + ´ - ´  
 
We establish the following results by using Theorem 9. 

 
Corollary 9.1. Let TiO2[m, n] be the family of titania nanotubes. Then 

(i)  2 580 284 .evM TiO mn n    

(ii)  2
275 1021

.
1568 4704

m
evM TiO mn n   

(iii)  2
37 37

.
28 28evI TiO mn n   

(iv)  2 4444 1644 .evF TiO mn n   

(v)  2
4 3 6 4 1

.
7 2 6 7 2

evP TiO mn n
          
   
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(vi)      2 4 7 12 2 6 6 4 7 4 2 .evRP TiO mn n      

 
Proof: Put a = 2, –2, –1 , 3, –½, ½ in equation (11), we get the desired results. 
 
Theorem 10. The general multiplicative ev-degree index of TiO2[m, n] is 

 ( ) ( ) ( )6 4 4 6 2
2 6 7 8a an a mn n a mn n

evM II TiO + -= ´ ´  (12) 

Proof: Let T= TiO2[m, n]. By using equation (2) and Table 5, we obtain 

( ) ( )
( )

2
aa

ev ev
e E T

M II TiO d e
Î

= Õ  

 ( ) ( )6 4 2 2 6 26 7 7 8an a mn n an a mn n+ -= ´ ´ ´  

 ( ) ( )6 4 4 6 26 7 8an a mn n a mn n+ -= ´ ´  
We establish the following results from Theorem 10. 

 
Corollary 10.1. Let TiO2[m, n] be the family of titania nanotubes. Then 

(i)   12 8 8 12 4
2 6 7 8 .n mn n mn n

evM II TiO       

(ii)  
12 8 8 12 4

2
1 1 1

.
6 7 8

n mn n mn n
m

evM II TiO
 

            
     

 

(iii)   18 12 12 18 6
2 6 7 8 .n mn n mn n

evF II TiO      

(iv)  
6 4 4 6 2

2
1 1 1

.
6 7 8

n mn n mn n

evI II TiO
 

            
     

 

(v)  
3 2 2 3

2
1 1 1

.
6 7 8

n mn n mn n

evI II TiO
 

            
     

 

(vi)   3 2 2 3
2 6 7 8 .n mn n mn n

evRP II TiO      

 
Proof: Put a = 2, –2, 3, –1, –½, ½ in equation (12), we obtain the desired results. 
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